Oxford Cambridge and RSA

GCE

Physics A

Unit H156/02: Depth in physics
Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Here are the subject specific instructions for this question paper

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

SIGNIFICANT FIGURES

If the data given in a question is to 2 sf, then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Additional Guidance.

Annotations available in RM Assessor

Annotation		Meaning
\geqslant	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
3	Incorrect response	Used to indicate an incorrect answer or a point where a mark is lost.
AE	Arithmetic error	Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.
ECF	Error carried forward	Used in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.
L1	Level 1	L1 is used to show 2 marks awarded and L1^ is used to show 1 mark awarded.
L2	Level 2	L 2 is used to show 4 marks awarded and L^{\wedge} is used to show 3 marks awarded.
L3	Level 3	L3 is used to show 6 marks awarded and L3^ is used to show 5 marks awarded.
POT	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEEN	Seen	To indicate working/text has been seen by the examiner.
SF	Error in number of significant figures	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. Penalised only once in the paper.
TE	Transcription error	This error is when there is incorrect transcription of the correct data from the question, graphical read-off, formulae booklet or a previous answer. Do not allow the relevant mark and then follow through the working giving ECF for subsequent marks.
XP	Wrong physics or equation	Used in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
\wedge	Omission	Used to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
Reject	Answers which are not worthy of credit
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question		Answer	Marks	Guidance			
$\mathbf{3}$	(a)	$\begin{array}{l}h \text { measured with a metre rule/ruler } \\ \text { (electronic) timer/data logger (started and stopped } \\ \text { electronically) } \\ \text { Method to start timer (and release ball), e.g. electromagnet } \\ \text { or light gate to start timer } \\ \text { Method to stop timer, e.g. trap door, second light gate }\end{array}$	B1	B1	Allow metre stick, tape measure		
Allow one mark for use light gates without							
reference to timer/starting/stopping						$]$ Not stopwatch	B1
:---							

Question		Answer	Marks	Guidance
4	(a)	(weight of plank =) 50×9.81 or 490.5 OR uses a distance of 0.7 m to calculate clockwise moment (anticlockwise moment $=$) $T \sin 30^{\circ} \times 1.5$ OR 0.75T $($ clockwise moment $=) 490.5 \times 0.7=343(\mathrm{~N} \mathrm{~m})$ $T \sin 30^{\circ} \times 1.5=343 O R T \sin 30^{\circ}=229$ $T=457.8(\mathrm{~N})$	C1 C1 C1 C1 AO	Allow $T \cos 60^{\circ} \times 1.5$ Allow 344, Allow 458.6,
	(b)	$\begin{gathered} x=\frac{T L}{E A} \\ x=\frac{460 \times 1.73}{210 \times 10^{9} \times 11 \times 10^{-6}} \\ x=3.45 \times 10^{-4}(\mathrm{~m}) \end{gathered}$	C1 C1 A1	Note x must be the subject Allow alternative methods e.g. determines stress $\left(4.18 \times 10^{7} \mathrm{~Pa}\right) \mathrm{C} 1$ determines strain $\left(1.99 \times 10^{-4}\right) \mathrm{C} 1$ determines x Allow 3.4, 3.5, 3.43, 3.44 Allow 2 marks for 3.45×10^{n}
		Total	7	

Question			Answer	Marks	Guidance
5	(a)		(Resultant) force is (directly) proportional to the rate of change of momentum.	B1	Allow equation with symbols defined. Allow equal for proportional Ignore reference to direction Ignore $\mathrm{F}=\mathrm{ma}$
	(b)	(i)	0.868 or 0.87	B1	Allow - 0.868 or - 0.87
		(ii)	change in momentum $=0.5 \times 17 \times 0.18$ or $1.53(\mathrm{~N} \mathrm{~s})$ Momentum of tennis ball $=1.53-0.868=0.662$ $v=0.662 / 0.062=10.6 \text { or } 10.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right)=11\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ECF from (b)(i) Or 0.062 $(v-14)=1.53$ Or $v=24.7-14=10.7$ Allow 1 mark for $24.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ or $38.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		(iii)	For an elastic collision, kinetic energy/KE is conserved speeds are different (so for the same mass KE is different)	B1 B1	Allow speed of approach = speed of separation Allow correct calculations of KE for both speeds Ignore reference to the ball heating up
			Total	7	

Question			Answer	Marks	Guidance
6	(a)		\mathbf{X} (filament) lamp \mathbf{Y} (fixed)(ohmic) resistor	B1	Allow ptc thermistor / heater element Not metallic conductor
	(b)		$\begin{aligned} & \mathrm{I}_{\mathrm{X}}=0.5 \mathrm{~A} \text { and } \mathrm{I}_{\mathrm{Y}}=0.36 \mathrm{~A} \mathrm{OR} \mathrm{I}=0.86 \mathrm{~A} \\ & 9.6 \mathrm{~V}-7.2 \mathrm{~V} \text { or } 2.4 \mathrm{~V} \\ & r=\frac{9.6-7.2}{0.86}=2.8 \Omega \end{aligned}$	C1 C1 A1	Allow Alternative correct methods 2.79Ω
	(c)	(i)	Micrometer Repeat readings in different directions/along wire/different wires and average	B1 B1	Allow calliper Not vernier scale
		(ii)	$\begin{aligned} & A=\frac{\pi \times\left(0.12 \times 10^{-3}\right)^{2}}{4}=1.13 \times 10^{-8} \text { OR } \rho=\frac{1.86 \times A}{21} \\ & \rho=\frac{17 \times 1.86 \times 1.1 \times 10^{-8}}{21} \\ & \rho=1.7 \times 10^{-8}(\Omega \mathrm{~m}) \end{aligned}$	C1 C1 A1	Note ρ must be the subject Allow 2 marks for 1.0×10^{-9} (factor of 17 omitted) Allow 2 marks for 6.8×10^{-8} (diameter used instead of radius) Allow 2 marks for 0.017 (POT omitted)
		(iii)	$\begin{align*} & \frac{0.1}{21} \text { or } \frac{0.02}{1.86} \text { or } \frac{0.01}{0.12} \tag{B1}\\ & \left(\frac{0.1}{21}+\frac{0.02}{1.86}+2 \times \frac{0.01}{0.12}\right) \times 100=18(.2) \% \end{align*}$	C1 A1	Allow max/min methods $\begin{aligned} & \rho_{\max }=2.03 \times 10^{-8} \text { and } \rho_{\min }=1.41 \times 10^{-8} \\ & \frac{\Delta \rho}{\rho} \times 100(\mathrm{~B} 1) \end{aligned}$ Allow 17.8\% Do not penalise significant figures Allow 1 mark for 9.88\% Allow 20\% with evidence of working
			Total	11	

Question			Answer	Marks	Guidance
7	(a)		Level 3 (5-6 marks) Clear explanation of observations and correct determination of frequency. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear explanation of observations or correct method to determine the frequency or some explanation of observations and some method for the determination of the frequency There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Has limited explanation of observations or limited evidence of method to determine the frequency There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1 x6	Indicative scientific points may include: Explanation of observations - Metal sheet reflects microwaves - Idea/description of superposition - Constructive/destructive interference - Standing wave pattern between T and plate - Maxima are antinodes and and minima are nodes. - Phase difference at nodes and antinodes - Distance between successive maxima/minima is $N / 2$ - Distance between adjacent regions of maximum and minimum intensities is N4 Determination of frequency - $f=\frac{v}{\lambda}$ - $\lambda=4 \times 72 \mathrm{~mm}=288 \mathrm{~mm}$ - $f=\frac{3 \times 10^{8}}{288 \times 10^{-3}}=1.04 \times 10^{9} \mathrm{~Hz}$
	(b)		Microwaves from T are transverse/polarised wite At 0° or 180° the grille blocks (all) the (polarised) waves and at 90° the grille allows all the microwaves to pass.	B1 B1	Allow E field perpendicular to direction of motion Allow explanation in terms of $I=I_{0} \cos ^{2} \theta$
			Total	8	

Question			Answer	Marks	Guidance
8	(a)	(i)	$\begin{aligned} & 1.36 \\ & 1.97 \times 10^{8} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Not 1.3 or 1.4 Not 1.9 or 2.0
		(ii)	$\left(\frac{5.2 \times 10^{-7}}{1.52}=\right) \quad 3.4(2) \times 10^{-7}(\mathrm{~m})$	B1	Allow $3.41 \times 10^{-7}(\mathrm{~m})$ Not ECF from (a)(i)
	(b)	(i)	$\begin{aligned} & \sin \theta=\frac{\sin 37}{1.52}(=0.39593) \\ & \theta=23(.3)^{\circ} \end{aligned}$	C1 A1	
		(ii)	Ray in glass bends towards normal and ray in ethanol bends away from normal but at a smaller angle than 37° Rays are straight by eye	B1	Note Ray should not be parallel to incoming ray. Not angle of refraction is zero in glass
			Total	6	

Question			Answer	Marks	Guidance
9	(a)	(i)	Energy of a photon	B1	Ignore h is Planck constant and f is frequency
		(ii)	Minimum energy required to remove/emit (a single) electron from the metal surface	B1	Ignore 'it is work function' Ignore photoelectric effect
		(i)	$\begin{aligned} & 4.1 \mathrm{eV}==4.1 \times 1.6 \times 10^{-19} \text { or } 6.56 \times 10^{-19} \mathrm{~J} \mathrm{OR} \\ & E_{k}=6.63 \times 10^{-34} \times 1.2 \times 10^{15}-\phi \\ & E_{k}=6.63 \times 10^{-34} \times 1.2 \times 10^{15}-6.56 \times 10^{-19} \\ & E_{k}=1.39 \times 10^{-19} \mathrm{~J} \\ & v=\sqrt{\frac{2 \times 1.39 \times 10^{-19}}{9.11 \times 10^{-31}}}=\sqrt{3.06 \times 10^{11}} \\ & 5.536 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	C1 C1 C1 C1 A0	Allow $f_{0}=9.9 \times 10^{14} \mathrm{~Hz}$ Allow $\begin{aligned} & E_{k}=6.63 \times 10^{-34} \times\left(1.2 \times 10^{15}-9.9 \times 10^{14}\right) \\ & \text { Allow } 1.4 \times 10^{-19} \mathrm{~J} \end{aligned}$ 3.06×10^{11} scores three marks
		(ii)	Maximum energy is independent of intensity/(number of photons has increased but) energy of photon is the same/energy of a photon is only dependent on frequency/intensity affects the number of photons/electrons released only/frequency of photon has not changed No change in maximum speed	M1 A1	Not "Does not increase"
	(c)		$\begin{aligned} & \lambda\left(=\frac{h}{m v}\right)=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 5.5 \times 10^{5}} \\ & =1.3(2) \times 10^{-9}(\mathrm{~m}) \end{aligned}$	C1 A1	
			Total	10	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk
For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England

Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

